Влияние радиоактивного загрязнения на окружающую среду

На АЭС «Фукусима-1» используется железобетонный контейнмент боксового типа. Корпус реактора размещен во внутреннем защитном металлическом корпусе. Также конструкция защитной оболочки рассчитана на максимальное сейсмическое воздействие, определенное для площадки размещения АЭС. Однако, на построенной в 1970-х годах АЭС нет пассивных систем безопасности, не требующих наличия питания для выполнения защитных функций, и отсутствует ловушка расплава. Стоит также отметить, что на АЭС «Фукусима-1» происходит коррозия оболочек ТВЭЛ (тепловыделяющий элемент - главный конструктивный элемент активной зоны гетерогенного ядерного реактора , содержащий ядерное топливо ) в кипящем режиме. А расположение органов системы управления и защиты реактора (СУЗ) на станции - нижнее (при котором необходимо поднять стержни для остановки реактора, для чего нужно электричество) [1].

В середине дня в пятницу, 11 марта 2011 года сейсмические датчики АЭС «Фукусима-1» <http://obozrevatel.com/abroad/glava-magate-otkazalsya-ehat-na-fukusimu-1-iz-za-radiatsii.htm>в префектуре Фукусима зарегистрировали первые свидетельства самого мощного землетрясения в новейшей истории Японии. Программа среагировала на сигналы и начала задвигать регулирующие стержни во все три реактора, которые работали на тот момент. Стержни уменьшили число нейтронов, порождаемых каждым радиоактивным распадом, и число новых распадов.

Через три минуты реакторы работали только на 10% своей мощности, через 6 минут - на 1%, а через десять минут первые три реактора АЭС перестали производить энергию. И уже никогда не начнут.

В результате каждого распада ядро урана-235 или плутония-239 разваливается на два других ядра и выделяет массу энергии. Энергия на единицу массы ядерного топлива примерно в миллион раз превосходит энергию от сгорания ископаемого топлива - поэтому ядерный распад такой многообещающий источник энергии. Продукты распада очень радиоактивны, но быстро распадаются дальше (в течение года около 80% продуктов распада становятся стабильными). Но в первые часы после остановки реактора они производят большое количества тепла - его нельзя отключить так, как выключают реакторы. Процесс должен закончиться сам по себе. По этой причине управление «теплотой радиоактивного распада» - один из важнейших аспектов безопасности ядерного реактора. И пока реакторы «Фукусимы-1» охлаждались, ударило цунами. Высота волн достигла отметки 14 метров [ 6 ].

Цунами разрушило запасные дизельные генераторы, которые питают насосы, заставляющие охлаждающую жидкость циркулировать по реактору. В отсутствие циркуляции температура стала подниматься, а вода - превращаться в пар, в результате чего выросло давление.

Создатели реактора предвидели возможность повышения давления вокруг реактора. Но пока работало электроснабжение, насосы откачивали горячую жидкость от реактора в конденсатор. Отведение тепла могло продолжаться и дальше - но весь процесс был завязан на дизельные генераторы, разрушенные цунами.

В первые часы после остановки реакторов водород накапливался и стал просачиваться под купол реактора. В какой-то момент его концентрация достигла такой величины, что он не мог не сдетонировать, - и сначала в первом, затем в третьем, а под конец и во втором блоке произошли взрывы, которые сорвали купола зданий. Сами контейнменты остались целы.

Вначале сохранялась надежда на спасение самих реакторов - с тем, чтобы они продолжали производить энергию после того, как все войдет в норму. Но надежда таяла, а температура росла, и операторы станции начали предпринимать меры, разрушительные для оборудования. Например, они начали охлаждать реакторы морской водой.

Для того чтобы уменьшить последствия утечки для окружающей среды, компания-оператор АЭС "Фукусима-1" TЕРСО приняла парадоксальное, на первый взгляд, решение - из энергоблока в океан начали сбрасывать относительно слаборадиоактивную воду, чтобы освободить место под куда более "грязную" жидкость и не дать ей просочиться за пределы станции [3].

Перейти на страницу: 1 2 3 4 5 6 7

Другие статьи

Эколого-фаунистическая характеристика пресноводных моллюсков разнотипных водоемов Волгоградской области
Актуальность темы. Экологическая роль представителей малакофауны в экосистемах многообразна. Пресноводные моллюски, брюхоногие (Gastropoda) и двустворчатые (Bivalvia), представляют собой та ...

Законы, принципы, правила экологии. Планирование природоплозования
Как и всякая отрасль науки экология имеет свои законы, которые характеризуют взаимоотношение, различных элементов экосистемы и, в конечном итоге, все процессы в биосфере. К сожалению, по сей ...

Изучение токсичности стоков Марийского целлюлозно-бумажного комбината на Daphnia magna
В ходе изучения токсичности стоков Марийского Целлюлозно-бумажного комбината на Daphnia magna [48] было отобрано 7 проб воды. Это 1-я-производственные стоки, 2-я - условно чистые стоки, 3-я - стоки ...