Факторы, влияющие на содержание тяжелых металлов в высших водных растениях

Концентрирующая способность водных растений по отношению к химическим элементам определяется видом растения, его физиологическими способностями, возрастом и стадией развития, условиями среды обитания - типом и гидрологическим режимом водоема, гранулометрическим составом грунта, а также географическим положением водоема и климатическими условиями.

Существенное влияние на микроэлементный состав водных растений оказывают экологические особенности обитания. В настоящее время принята следующая классификация водных макрофитов по взаимодействию со водной средой:

Гидрофиты - настоящие водные растения, постоянно растущие в воде:

эугидрофиты - погруженные растения,

плейстогидрофиты - плавающие растения,

аэрогидрофиты или гидрогигрофиты - воздушно-водные или водноболотные растения.

Гигрофиты - наземные растения влажных, переувлажненных и периодически затопляемых местообитаний с высокой влажностью воздуха:

эугигрофиты - наземные околоводные растения,

гигрогелофиты - наземные болотные растения,

гигромезофиты - наземные растения, занимающие высокие уровни береговой зоны затопления, сыроватые или влажные отмели [22].

Свободноплавающие гидрофиты (ряска, водокрас, трехдольница и др.) получают элементы минерального питания преимущественно из воды, поэтому интенсивность накопления того или иного элемента в них зависит в первую очередь от рН среды [23]. Высокая поглотительная способность растений делает их идеальными тестовыми объектами для количественного и качественного определения степени загрязнения водоема в течении вегетационного цикла.

Укорененные гидрофиты с плавающими листьями помимо водной массы получают значительную часть металлов из донных отложений. Наличие развитой корневой системы и активного транспорта из корней к листьям позволяет использовать их для определения антропогенных химических нагрузок, произошедших в течение не только текущего сезона (по химическому составу листьев), но и предыдущих (корни, корневища). Полностью погруженные гидрофиты, как укорененные так и неукорененные, на протяжении вегетационного сезона могут менять источники поступления вещества в свои ткани. Для растений с мощной корневой системой донные отложения являются основным источником поступления вещества при значительной роли водной массы.

Укореняющиеся гелофиты извлекают питательные вещества не только из воды, но и из околоводного почвенного слоя, что следует учитывать при применении растений этой экологической группы в качестве биоиндикаторов степени загрязнения водных экосистем.

Растения-гидрофиты поглощают ионы металлов из водной среды и возвращают их при деструкции и метаморфизации органического вещества в донные отложения. Последние депонируют металлы в формах с низкой биодоступностью, поэтому часто отмечается даже снижение поступления металлов в растения, несмотря на некоторое накопление их в донных грунтах [24]. Абсорбция питательных веществ укореняющейся растительностью и их вымывание после отмирания растений или частей растений существенно увеличивают количество питательных веществ в воде. Укореняющиеся растения подобны «насосу питательных веществ», особенно в литоральных экосистемах, где макрорастительность - основная составляющая первичной продукции [25].

В зависимости от условий обитания содержание тяжелых металлов в макрофитах сильно варьирует. Часто это вызывается воздействием локального источника загрязнения. Так, в работе [26] представлены исследования по изучению аккумулирующей способности водной растительности Шекснинского плеса Рыбинского водохранилища, который характеризуется высокой степенью минерализации вод, вызванной стоками промышленных предприятий г. Череповца. Наиболее высокие концентрации тяжелых металлов в тканях водных растений отмечались недалеко от города, несколько ниже было загрязнение в центральном участке плеса, что связано с разбавлением водных масс. При концентрации в воде северного участка плеса цинка -27, никеля - 2, хрома - 0.5. в рдесте злаковом отмечались следующие величины накопления этих металлов: цинка - 150.0 мкг/г, никеля - 98.2 мкг/г и хрома - 127.5 мкг/г. У рдеста пронзеннолистного содержание цинка составляло - 145.0 мкг/г, Ni - 20.2 мкг/г, Cr - 26.3 мкг/г. Наибольшей способностью к накоплению обладали свободноплавающие и погруженные растения - ряска, рдесты гребенчатый и злаковый. Находящийся в этих же условиях обитания представитель гигрофитов - горец земноводный накапливал металлы в значительно меньшей концентрации, иногда не превышающей их содержания в воде.

Перейти на страницу: 1 2

Другие статьи

Оценка экологических последствий аварий атомных электростанций на примере Чернобыльской АЭС и Фукусима-1
Целью дипломной работы является оценка влияния радиоактивных изотопов, попавших в окружающую среду в результате Чернобыльской катастрофы и катастрофы на АЭС «Фукусима-1» на человека и живую ...

Создание оборотного водоснабжения на станции очистки гальванических стоков
Гальванические покрытия являются одним из эффективных методов защиты от коррозии, они также широко применяются для придания поверхности деталей ряда ценных специальных свойств: повышенной тв ...

Климат Земли и человек
Климатические условия оказывали воздействие на жизнь и деятельность человека, начиная с первых этапов его существования. Неоднократно высказывалось мнение, что на эволюцию предков человека ...